
Bound states in the three-dimensional electron gas with repulsive or attractive test charges:

many-body effects

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1996 J. Phys.: Condens. Matter 8 7393

(http://iopscience.iop.org/0953-8984/8/40/006)

Download details:

IP Address: 171.66.16.207

The article was downloaded on 14/05/2010 at 04:15

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/8/40
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter8 (1996) 7393–7409. Printed in the UK

Bound states in the three-dimensional electron gas with
repulsive or attractive test charges: many-body effects

A Gold† and A Ghazali‡
† Laboratoire de Physique des Solides, Université Paul-Sabatier, 118 Route de Narbonne, 31062
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Abstract. In the low-density regimebound statesbetweennegative(repulsive) test charges are
obtained when many-body effects (exchange and correlation) are incorporated in the screening
function of the three-dimensional electron gas via the local-field correction. The Schrödinger
equation is solved in the momentum space by diagonalizing the corresponding matrix. We also
perform variational calculations and find good agreement between the two methods. For high
electron densityrs < rsc ≈ 6–8 (rs is the density parameter) no bound states are found. Below
a critical densityrs > rsc the number and the energy of bound states increase with decreasing
electron density. For largers the binding energy for the ground state saturates near−0.065 Ryd∗.
We discuss the wave functions of the ground state and of the lowest excited states. We also
present results for the effects of exchange and correlation for a positive (attractive) test charge
and we discuss results for the ground state and excited states.

1. Introduction

It is well known that a test charge in a three-dimensional electron gas is screened at
large distances [1, 2]. In addition, the screened potential exhibits Friedel oscillations [3].
One could ask whether a bound state can occur in the attractive part of these Friedel
oscillations. Friedel oscillations occur already within the framework of the random-phase
approximation (RPA). Recently, it was argued that many-body effects, described by the
local-field correction (LFC), strongly modify the screening properties of a two-dimensional
electron gas at low density and enhance Friedel oscillations [4]. In fact it was shown that
for a negative test charge many-body effects give rise to bound states in the low-density
range of the quasi-one-dimensional [5] and the two-dimensional [6] electron gases. In this
paper we study the three-dimensional electron gas and we show that bound states exist,
too. However, the binding energy is small compared to the effective Rydberg. In order
to describe many-body effects we use the concept of the LFC for the dielectric screening
function in the formulation of Singwi and coworkers [7]. (For a review, see [8]). A sum-
rule approach to this theory was published recently where the LFC was given in analytical
form [9].

For a positive test charge screened by a three-dimensional electron gas a bound state
can exist only for a density lower than a critical one, which is Mott’s (M) critical density
NM [10]. The possibility of bound states for equally charged particles was suggested in the
literature in the early sixties and studied for a short-range potential [11]. In the low-density
region a Wigner crystal is expected [12]. Paired electron crystals have been predicted

0953-8984/96/407393+17$19.50c© 1996 IOP Publishing Ltd 7393



7394 A Gold and A Ghazali

recently in the low-electron-density regime [13]. In fact, we show that in the low-density
regime the screened potential of a negative test charge becomes strong enough to produce
a bound state with another negative test charge.

We believe that our results for a repulsive screened test charge are novel and these
results are discussed in detail in the present paper. The screened attractive test charge has
been discussed before in the literature and, therefore, we describe very briefly some new
results, mainly concerning excited states.

The paper is organized as follows. In section 2 we describe the model and the theory.
Our results for repulsive test charges concerning the exact method to solve the Schrödinger
equation and the variational approach are described in section 3. Some results for a screened
positively charged impurity are presented in section 4. We comment on our results in
section 5 and conclude in section 6.

2. Model and theory

2.1. The screened Coulomb interaction

As the model we use a three-dimensional electron gas with a parabolic dispersion. Distances
are expressed in units of the effective Bohr radiusa∗ = εL/m∗e2 with the Planck constant
h = 2π . Wave numbers are expressed in units of the inverse Bohr radius.m∗ is the
effective mass andεL is the dielectric constant of the background. Energy values are
expressed in units of the effective Rydberg Ryd∗ = m∗e4/2ε2

L. The density parameterrs

is given byrs = [3/4πNa∗3
]1/3 and rsa

∗ is the Wigner–Seitz radius.N = k3
F /3π2 is the

three-dimensional electron density andkF is the Fermi wave number withkF a∗ = 1.92/rs .
The Fermi energyεF is given asεF /Ryd∗ = (9π/4)2/3/r2

s = 3.683/r2
s . We consider a test

charge screened by the electron gas of densityN . The motivation for using a test charge is
that the screened potential is known if the LFC for charge density fluctuations is known.

The Coulomb interaction potential in the Fourier space between a (fixed) negative test
charge and another negative test charge is repulsive and given byVt(q) = 4πe2/εLq2.
If the interaction is screened by an electron gas the screened interaction potentialVsc,t (q)

is written asVsc,t (q) = Vt(q)/ε(q). In section 4 we study an attractive test charge with
Vt(q) = −4πe2/εLq2. The dielectric functionε(q), calculated within the RPA and including
the LFCG(q), is given by [1, 2]

1

ε(q)
= 1 − V (q)X0(q)

1 + V (q)[1 − G(q)]X0(q)
. (1)

X0(q) is the Lindhard function in three dimensions [1] andV (q) is the bare interaction
potential V (q) = 4πe2/εLq2. For G(q) = 0 one obtains the RPA expressionε(q) =
1 + V (q)X0(q) [1]. In our calculation we use forG(q) the sum-rule approximation [9]
of the Singwi–Tosi–Land–Sjölander (STLS) approach [7]. Analytical results have been
obtained within a generalized Hubbard form for the LFC as [9]

G(q) = r3/4
s

0.846q2

2.188q2
0C13(rs) + q2C23(rs)

(2)

whereq0 = 121/4/r
3/4
s a∗ is a characteristic wave number. In the Hubbard approximation

(HA) [14] only exchange effects are included. Within the HA for the LFC the coefficients
for the LFC are given byC13HA = 1.096r1/4

s and C23HA = 1.69r3/4
s [9]. Equation (2)

contains exchange and correlation effects via the coefficientsC13(rs) andC23(rs) (two-sum-
rule approach). The STLS approach does not satisfy the compressibility sum rule [1]. This
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is a well known defect of this theory [7]. In equation (19) we describe an LFCGc(q) which
satisfies the compressibility sum rule and gives results quantitatively similar to those of the
calculation withG(q).

Figure 1. Screened Coulomb potentialVsc,t (r) of a repulsive test charge against distancer

for rs = 10 as the solid line. The dotted line represents the unscreened potential. The dashed
line represents the RPA approximation. In the inset we showVsc,t (rm) and rm versusrs . The
dashed–dotted lines represent results calculated by usingGc(q) as given in equation (19).

In the real space the screened Coulomb interaction is given by

Vsc,t (r) = 1

2π2r

∫ ∞

0
dqq sin(qr)Vsc,t (q). (3)

A representative example forVsc,t (r) is shown in figure 1 forrs=10 with a minimum
Vsc,t (rm) = −0.093 Ryd∗ at rm = 6.3a∗. Note that the attractive part is strongly enhanced
by the LFC as compared to the RPA one. The corresponding values forrs = 20 are
Vsc,t (rm) = −0.097 Ryd∗ and rm = 9.3a∗. A systematic study ofrm and Vsc,t (rm) versus
rs (see the inset in figure 1) shows thatVsc,t (rm) presents a weak maximum and saturates
at largers at about−0.09 Ryd∗. Vsc,t (rm) becomes very small forrs < 2. We note that
rm is quite large in the low-density range, which means that bound states, if any, are very
extended.

Friedel oscillations of the screened potential are shown in the right-hand side of figure 1.
Many-body effects increase the amplitude of Friedel oscillations; however, the effect is
relatively small: the enhancement is about a factor two forrs = 10. On the other hand
we conclude from figure 1 that the attractive minimum within the RPA atrm = 8.5a∗

with Vsc,t (rm) = −0.008 Ryd∗ is enhanced by many-body effects by a factor of 12:
Vsc,t (rm) = −0.0923 Ryd∗. We shall show that forrs = 10 the binding energy for the
ground state is−0.0207 Ryd∗.

In order to show that bound states exist in the screened potential one has to solve the
Schr̈odinger equation for a test charge moving in the external potential.Vsc,t (r) is a central
potential and only depends onr. Accordingly, the angular dependence of the wave function
in the real space and in the momentum space is described by spherical harmonicsYlm(ϕ, θ).
It is immediately clear that states with given angular momentuml are degenerate with
respect to the quantum numberm and the degeneracy isgl = (2l + 1). However, states
with different values ofl are not degenerate, as in the bare attractive hydrogen atom. For
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the screened potential this accidental degeneracy [15] found in the hydrogen atom is lifted.
One can use for the wave functionψ(r) = φnr l(r)Ylm(ϕ, θ) and one finds forφnr l(r)

the radial Schr̈odinger equation for the effective potentialVeff (r) = Vl(r) + Vsc,t (r) with
Vl(r) = l(l + 1)/2m∗r2. Veff (r) is strongly repulsive at small distances,Veff (r →
0)/Ryd∗ = l(l + 1)a∗2/r2 + 2a∗/r. From general arguments [15] it is clear that for
l > 0 the behaviour of the wave function for smallr is determined byVl(r). As for
the hydrogen atom we conclude that forl > 0 φnr l(r → 0) ∝ rl . In the momentum space
ψ(q) = φnr l(q)Ylm(θ, ϕ) and φnr l(q → 0) ∝ ql [16]. In the following we will use as
notationφ or φl for φnr l .

2.2. The Schr¨odinger equation in momentum space

The Schr̈odinger equation for the screened potential can only be solved numerically and
we choose to solve the Schrödinger equation in the momentum space. The reason for this
is that the screened potential is readily given in momentum space (see equation (1)). As
we will show below, the present method is accurate and fast enough and might be used
for potentials which do not have spherical symmetry. The Schrödinger equation in the
momentum space is given by

q2

2m
ψ(q) + 1

8π3

∫
d3q′ Vsc,t (q − q′)ψ(q′) = Eψ(q). (4)

Using spherical coordinates, we have discretized the integral overq′ in equation (4)
according to a set of (q ′, θ ′,ϕ′). The sampled values inq ′, θ ′, and ϕ′ are those used
in Gauss routines for integration. Two, three, or four adjacent intervals inq ′, θ ′, and ϕ′

are used in order to correctly sample the integral. In this way the Hamiltonian operator in
equation (4) is discretized under the form of a matrix. The order of this matrix is 3200 (2×8
points for 06 q ′a∗ < 2, 2×5 points for 06 θ ′ 6 π and 4×5 points for 06 ϕ′ 6 2π ). The
eigenenergy and eigenfunction problem are then solved numerically by a standard method
for matrix diagonalization.

We have checked the accuracy of our method by comparing the eigenfunctions and
eigenenergies thus obtained with those of known problems, such as the three-dimensional
attractive Coulomb problem. Not only eigenenergies but also eigenfunctions are calculated
with a good accuracy. Note, however, that any discretization introduces a systematic lifting
of the degeneracy because it acts as a perturbation to the true Hamiltonian, which is defined
in the continuous momentum space. The lifting of the degeneracy, however, is small. In
addition, as in other numerical solutions, the bound states are less accurately determined
when they are more excited.

3. The screened repulsive test charge

3.1. Matrix diagonalization

We first discuss the energy values for bound states versusrs . For rs < 6 no bound states
have been found. For 66 rs < 11 we find one bound state (l = 0, gl = 1). Its energy is
given in the inset of figure 2. The binding energy approaches zero forrs = rsc = 6 and
rsc is the critical density parameter. Our variational results are also shown in the inset and
give a smaller binding energy; where the binding energy vanishesrsc = 7. It is known that
the variational method gives too small binding energies, especially when the binding energy
becomes small. Forrs > 11 we find excited bound states. Our results for the bound states
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Figure 2. Bound state energiesEnum for a screened repulsive test charge found by matrix
diagonalization againstrs as dots(l = 0), squares(l = 1), triangles(l = 2), and bars(l = 3).
The variational resultsEmin (characterized bynr l) are shown as solid lines. In the inset we
show the ground state energy versusrs for 5 < rs < 11 with a logarithmic energy scale.

obtained with the method of matrix diagonalization versusrs (0 < rs < 30) are shown in
figure 2 as solid symbols. The solid lines represent the variational calculation, as discussed
in subsection 3.2. Figure 2 contains the complete information about the ground state and the
excited states. We denote the states by two quantum numbers, the radial quantum number
nr and the angular quantum numberl.

With our numerical method we also obtain all information about the eigenfunctions.
The eigenfunctions, which we obtain numerically, are the eigenfunctionsψ(q, θ, ϕ) in the
momentum space. In order to characterize the angular momentuml of the bound states
three methods have been applied: (i) the (quasi-) degeneracy of the eigenenergy, (ii) the
behaviour of the wave function at small wave numbers, and (iii) the angular dependence of
the wave function. However, details are not given in this paper.

The eigenfunctions can be Fourier transformed to obtain the eigenvectors in the normal
space. This method has been applied; however, the numerical inaccuracy in theq-space
is reinforced in ther-space. Therefore, we do not give here the results obtained with this
method. Instead, using the(θ, ϕ) symmetry of the angular part of the wave function one
can show that [16]

φl(r) ∝ 1

r

∫ ∞

0
dq ′q ′jl(q

′r)φl(q
′) (5)

and jl(x) is the spherical Bessel function of the first kind of orderl. For the ground
state wave function one has to usej0(x) = sin(x). It follows immediately thatφ0(r →
0) = constant. In fact, in order to obtain the radial dependence ofψ(r, θ, ϕ) one can
use in equation (5)ψ(q, θ ′, ϕ′) instead ofφl(q

′). Numerical results for the ground state
ψ(r, θ, ϕ) versusr are shown in figure 3 forrs = 20. Forr = 0 we find a very small finite
value and we cannot decide whether this is a true effect or a numerical error. However,
ψ(r, θ, ϕ) = φ(r)Y00(θ, ϕ) shows a large peak at aboutr∗ = 10a∗, which corresponds to
the valuerm, where the screened potential shows a strong minimum.

The ground-state wave function in theq-space is shown in figure 4. Note that near
qa∗ = 0.4 the wave functionψ(q, θ, ϕ) = φ0(q)Y00(θ, ϕ) changes its sign and it decays
very rapidly forqa∗ > 1. The numerical results are in very good agreement with our results
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Figure 3. Wave functionψ(r) of the ground state(nr = 1, l = 0) for a screened repulsive test
charge forrs=20 againstr. The solid dots are the numerical results of the matrix diagonalization
and the solid line represents the variational calculation withα = 7.54a∗ andk1 = 2.80.

Figure 4. Wave functionψ(q) of the ground state(nr = 1, l = 0) for a screened repulsive test
charge forrs=20 againstq. The solid dots are the numerical results of the matrix diagonalization
and the solid line represents the variational calculation withα = 7.54a∗ andk1 = 2.80.

obtained with a variational wave function (see the solid line in figure 4) as described in the
next section.

3.2. The variational wave function

Using a trial wave functionφv(r) the variational energyEvar is given by

Evar = 〈T 〉 + 〈Vl〉 + 〈Vsc,t 〉 (6)

where〈O〉 = ∫ ∞
0 drr2φv(r)Oφv(r). For certain simple wave functions ther-integrals for

O = T , Vl andVsc,t can be calculated analytically.
The screened potential near the minimum atr∗ can be described by a one-dimensional

oscillator potential. Therefore we use as a variational wave function

φ1v(r) = Ark1/2e−r2/2α2
(7)

with the normalization constantA given by A2 = 2/0[(k1 + 3)/2]α3+k1. k1 and α

are the variational parameters. It should be noted thatφ1v(r) describes states with a
certain angular momentuml: the radial Schr̈odinger equation contains the partVl(r) and
ψ(r) = φ1v(r)Ylm(θ, ϕ). φ1v(r) has one nodenr = 1 at r = 0 if k1 > 0. Solving



Bound states in 3DEG 7399

the variational problem with this wave function gives bound states with quantum numbers
nr = 1 andl = 0, 1, 2, 3, . . .. Radial wave functions with two nodes have a small binding
energy and are discussed later.

We obtain for the radial wave function withnr = 1 and characterized byk1 andα the
following analytical results:

〈T 〉 = Ryd∗(a∗2/α2)(2k1 + 3)/(2k1 + 2) (8)

〈Vl〉 = Ryd∗(a∗2/α2)2l(l + 1)/(k1 + 1) (9)

and

〈Vsc,t 〉 = 4

π
Ryd∗a∗

∫ ∞

0
dq

1F1[(3 + k1)/2; 3/2; −q2α2/4]

ε(q)
. (10)

1F1(x; y; z) is the degenerate hypergeometric function [17]. Note thatε(q) together with
the LFC depends onrs . Consequently, the variational parametersk1 andα, at E = Emin,
depend onrs and on the form chosen for the LFC. This variational approach can be easily
applied when other expressions for the LFC become available in the literature. Our result
obtained forl = 0, 1, 2 . . . are given in figure 5. Note that the states are very extended in
the normal space as is shown by the large values found forα. In fact, figure 5 is the only
figure where the reader can find information about the extension of the wave function as
function of rs : the wave functionφ1v(r) shows a maximum atr∗ given byr∗ = (k1/2)1/2α.

Figure 5. Minimal energyEmin with ψ1v(r) and variational parametersα andk1 for a screened
repulsive test charge againstrs for nr = 1 andl = 0, 1, 2, 3.

For the states with two nodesnr = 2 we use for the radial wave function

φ2v(r) = B(rk2/2 − Crk3/2) e−r2/2β2
. (11)
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This radial wave function describes the states withnr = 2 andl = 0, 1, 2, . . .. The following
analytical results for the variational energy are derived:

〈T 〉 = Ryd∗ a∗2

8
B2βk2+1{0([k2 + 1]/2)(2k2 + 3) + C2βk3−k20([k3 + 1]/2)(2k3 + 3)

+Cβk3/2−k2/20([k2/2 + k3/2 + 1]/2)(k2
2/2 + k2

3/2 − k2k3 − 2k2 − 2k3 − 6)}
(12)

〈Vl〉 = Ryd∗ a∗2

2
l(l + 1)B2βk2+1{0([k2 + 1]/2) + C2βk3−k20([k3 + 1]/2)

−2Cβk3/2−k2/20([k2/2 + k3/2 + 1]/2)} (13)

〈Vsc,t 〉 = 2

π
Ryd∗a∗B2

∫ ∞

0
dq

1

ε(q)
{βk2+30([k2 + 3]/2)1F1[(3 + k2)/2; 3/2; −q2β2/4]

−2Cβk2/2+k3/2+30([k2/2 + k3/2 + 3]/2)1F1[(6 + k2 + k3)/4; 3/2; −q2β2/4]
+C2βk3+30([k3/2 + 3]/2)1F1[(3 + k3)/2; 3/2; −q2β2/4]}. (14)

With the normalization condition〈φ2v|φ2v〉 = 1 we find

1/B2 = {βk2+30([k2 + 3]/2) − 2Cβk2/2+k3/2+30([k2/2 + k3/2 + 3]/2)

+C2βk3+30([k3 + 3]/2)}/2. (15)

The condition forC follows from the fact that〈φ1v|φ2v〉 = 0 and we obtain

C =
[

2α2β2

α2 + β2

]k2/4−k3/4
0([k1/2 + k2/2 + 3]/2)

0([k1/2 + k3/2 + 3]/2)
. (16)

Our resultsEmin of the variational approach fornr = 1 andnr = 2 are shown in figure 2.
Using the spherical Bessel functionsjl(x) the wave functionsφl(r) can be Fourier

transformed. One obtains [17]

φl(q) ∝ 1

q

∫ ∞

0
drrjl(qr)φl(r). (17)

For l = 0 the wave function in the momentum space is given byφl(q → 0) =constant. For
nr = 1 andnr = 2 the variational wave functions in the momentum space can be expressed
in terms of degenerate hypergeometric functions [17]. We only give the explicit results for
nr = 1 andl = 0 because equation (17) can be used directly to calculateφl(q). The Fourier
transforms of the variational wave functions can be compared directly with the results of
the matrix diagonalization. For the ground-state wave function withnr = 1 andl = 0 we
find the explicit result [17]

φ1v(q) ∝1F1[(6 + k1)/4; 3/2; −q2α2/2). (18)

Our results for the variational ground-state wave function forrs = 20 are shown in figure 4
and agree very well with the numerical results. We mention that the largeq-dependence is
in very good agreement with the numerical results.

For the first (1p) excited state the variational results for the wave function in the
momentum space are shown in figure 6 and are in reasonable agreement with the
corresponding results of the matrix diagonalization. The variational result for ther-
dependence (inset) and theq-dependence of the 2s state wave function withnr = 2 and
l = 0 are shown in figure 7 together with numerical results.

We have also applied the variational method with the variational wave function
φ3v(r) = Ark4/2 exp(−r/2δ) wherek4 = 1, 2, 3, 4 andδ is the variational parameter. These
wave functions describe the statesnr = 1 andl = 0, 1, 2, . . .. This wave function represents
for k4 = 0 and δ = a∗ the ground-state wave function of the hydrogen atom with an
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Figure 6. Wave functionψ(q) of the first excited state(nr = 1, l = 1) for a screened repulsive
test charge forrs = 20 againstq. The solid dots are the numerical results of the matrix
diagonalization and the solid line represents the variational calculation withα = 7.80a∗ and
k1 = 3.45.

Figure 7. Wave functionψ(q) of the excited state(nr = 2, l = 0) for a screened repulsive
test charge forrs = 30 againstq. The solid dots are the numerical results of the matrix
diagonalization and the solid line represents the variational calculation withβ = 10.25a∗,
k2 = 4.482 andk3 = 4.480. In the inset we show|ψ(r)|2 for the 2s state (solid line) and the
1s state (dashed line).

unscreened attractive Coulomb potential. The binding energy obtained withφ3v(r) is in
good agreement (8%) with results obtained by usingφ1v(r) (figure 2). Nevertheless, the
energy values found with the Gaussian variational formφ1v(r) are somewhat lower than for
the exponential form.

3.3. Different approximations for the LFC

We mention that one does obtain bound states within the HA. Some values for the binding
energy of the ground state for largers calculated withφ1v(r) are given in table 1. Note that
the binding energies are much smaller than if calculated with the full LFC, where exchange
and correlation effects are included. In table 1 we present some results for very largers .
Note that forrs = 100 the Fermi energy is very small,εF = 3.7× 10−4 Ryd∗, and disorder
effects are certainly relevant in real systems. Within the HA a systematic study versusrs

showed that bound states only exist forrs > rscHA = 12.6.
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Table 1. Ground state energiesEmin and variational parametersα and k1 for a screened
repulsive test charge found by the variational method withφ1v(r) using the LFC, the Hubbard
approximation (HA), and the RPA for different density parameters. The valuersc, where the
ground-state energy vanishes, is also given.

Emin/Ryd∗(α/a∗|k1) Emin/Ryd∗ (α/a∗|k1) Emin/Ryd∗ (α/a∗|k1)

rs LFC (rsc = 7.2) HA (rsc,HA = 12.6) RPA (rsc,RPA = 57.5)

100 −0.0607(15.0|6.6) −0.0109(21.7|6.3) −0.000 489(34.9|4.8)

80 −0.0629(13.6|5.9) −0.0116(19.4|5.7) −0.000 361(31.7|4.2)

60 −0.0658(11.8|5.2) −0.0124(16.8|4.9) −0.000 067(28.8|3.4)

40 −0.0657(8.9|4.1) −0.0127(13.9|3.9) —
30 −0.0617(8.8|3.6) −0.0120(12.2|3.3) —
20 −0.0515(7.5|2.8) −0.0089(10.6|2.4) —
15 −0.0416(6.8|2.3) −0.0039(10.0|1.8) —
10 −0.0195(6.4|1.6) — —

Even within the RPA we find a bound state at very low density, however, the binding
energy is extremely small. Some results are given in table 1. Usingφ1v(r) we have studied
in detail the behaviour of the binding energy of the ground state againstrs and found that
bound states only exists forrs > rscRPA = 57.5. Including the LFC we found bound states
for rs > rsc = 6. We conclude thatrscRPA/rsc = 9.58 which means thatNc/NcRPA = 880.

The calculations reported in this subsection show that the existence of a bound state in
a screened repulsive potential is not a special property of the LFC. In fact, forG(q) = 0
the bound state is induced by Friedel oscillations. However, forrs = 100 the bound-state
energy value is increased by a factor of 148 if many-body effects via the LFC are included.

In order to show that the chosen form of the LFC is not anad hoc trick to produce a
bound state for a screened repulsive test charge a more elaborate three-sum-rule approach
for the LFC was formulated [18]. There the LFC is given by

Gc(q) = r3/4
s

0.846q2

2.188q2
0C13c(rs) + q2C23c(rs) − q0qC33c(rs)

. (19)

The coefficientC13c(rs) is determined by the compressibility sum rule [1] using the
compressibility according to the analytical expression available in the literature [19].
C23c(rs) is fixed by the Shaw–Kimball relation [20]G(q → ∞) = 1 − g(0) using the
sum-rule approach:C23c(rs) = 0.846r3/4

s /[1 − g(0)] [9]. For g(0) we use the analytical
expression [21]g(0) = [z/I1(z)]2/8 with z = 1.629r1/2

s . I1(z) is the first-order modified
Bessel function. C33c(rs) is calculated using the relation between the pair-correlation
function g(0) and the static structure factor. Forrs = 10 we obtainC13c = 2.384,
C23c = 4.778, andC33c = 3.554. It can be shown [18] that the LFCGc(q) reproduces the
results of recent Monte Carlo calculations [22].

We have studiedVsc,t (rM) and rM versusrs with the LFC as given in equation (19)
and our results are shown in the inset of figure 1 as dashed–dotted lines. Forrs < 10 the
screened potential is slightly less attractive whilerM is practically unmodified. The dashed–
dotted line in figure 1 represents the screened potentialVsc,t (r) for rs = 10 calculated with
Gc(q).

Our results for the bound-state energies using the LFC in equation (19) againstrs

are shown in figure 8. Atrs = 20 the binding energies are reduced by about 8% if
compared with the results obtained with the two-sum-rule approach for the LFC (compare
with figure 2). The critical density parameter where the binding energy of the ground
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Figure 8. Bound-state energiesEnum for a screened repulsive test charge found by matrix
diagonalization againstrs as solid dots. The variational resultsEmin are shown as solid lines.
The LFC according to equation (19) is used in the calculation.

state vanishes increases fromrsc = 6 to rsc = 8. This is the result obtained by matrix
diagonalization. With the variational method we findrsc = 9 if we useGc(q) and rsc = 7
for G(q).

Together with our analysis of bound states in a screened repulsive potential using the
RPA and the HA for the LFC (see table 1) we conclude that the detailed form of the LFC
is important for a quantitative estimate ofrsc and the binding energy nearrsc. However, at
lower densityrs > 12 the detailed form of the LFC is of minor importance if exchange and
correlation effects are taken into account in the LFC within an approximative approach.

4. The screened attractive test charge

4.1. The attractive test-charge potential

Our two methods (the matrix diagonalization and the variational approach) can be easily
applied for an attractive test charge. The effects of screening within the RPA [23, 24] and
including the LFC [25] have already been considered in the literature. Nevertheless, we
want to point out that in the literature the variational method for the ground state only has
been applied and that the method of the matrix diagonalization is more general. Moreover
we also discuss excited states. For the classification of the states we use the notation of the
hydrogen atom withn and l.

The screened potential for an attractive test charge versusr is shown in figure 9 for
rs = 5. Note that already forrs = 5 differences are seen between the screened potential
according to the RPA and when the LFC is taken into account. Many-body effects via the
LFC lead to a weaker attractive potential; therefore, the binding energy is reduced.

4.2. Matrix diagonalization

The numerical results for the 1s state versusrs are shown in figure 10 within the RPA, the
HA, and by using the LFC. Note that the finite LFC reduces the binding-state energy. The
effect of the LFC is quite large for 2< rs < 6, which is the density range of simple metals.
With increasing density the binding energies decrease due to screening effects and vanish
at a critical density, which is Mott’s densityNM [10].
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Figure 9. Screened Coulomb potentialVsc,t (r) of an attractive test charge against distancer

for rs = 5 as the solid line. The dotted line represents the unscreened potential. The dashed
line represents the RPA approximation.

Figure 10. Ground-state energiesEnum for a screened attractive test charge found by matrix
diagonalization againstrs as solid dots. The variational resultsEmin (characterized by the
variational parameterν) are shown as solid lines. The HA is shown as the dashed line.

We mention thatN1/3a∗ = 0.62/rs and, accordingly,NM is related to a critical density
parameterrsM . For the ground state we obtainedrsM = 1.7(N

1/3
M a∗ = 0.36) by using the

RPA andrsM = 2.5 (N
1/3
M a∗ = 0.25) by using the LFC.

4.3. The variational approach

In general we find excellent agreement of the matrix diagonalization with the variational
energy obtained by using the variational method. For the ground state we use

φ4v(r) = A e−r/2ν . (20)

With this wave function for the 1s state we obtain

〈T 〉 = Ryd∗ a∗2

4ν2
(21)
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〈Vl〉 = Ryd∗ a∗2

ν2

l(l + 1)

2
(22)

and

〈Vsc,t 〉 = 1

2π2

∫ ∞

0
dqq2Vsc,t (q)

1

(1 + q2ν2)2
. (23)

Note that〈Vl〉 = 0 for l = 0 (1s state). Equation (23) is in agreement with the variational
method used in [23]. Our results for the ground-state energy obtained with the variational
method are shown in figure 10. Results within the HA are also shown. Forrs > 1.5rsM a
very good agreement is obtained between the two methods. For Mott’s critical density we
derive rsM = 2.12 (N

1/3
M a∗ = 0.29) within the RPA andrsM = 3.3 (N

1/3
M a∗ = 0.19) if the

LFC is used.

Figure 11. Wave functionψ(q) of the 1s state for a screened attractive test charge forrs = 10
againstq when the LFC is taken into account. The solid dots represent the numerical results of
the matrix diagonalization and the solid line represents the variational calculation according to
equation (24) withν = 0.513a∗.

The Fourier transform ofφ4v(r) is given by [17]

φ4v(q) ∝ 1/(1 + 4q2ν2)2. (24)

In figure 11 we showφ4v(q) versusq for rs = 10 with the LFC taken into account. The
results obtained with the method of matrix diagonalization are also shown.

For the first excited state, which is the 2s state, we use

φ5v(r) = A(1 − rD) e−r/2κ . (25)

The different energies for the variational energy are given by

〈T 〉 = Ryd∗ a∗2

4κ2

(1 − 2κD + 4κ2D2)

(1 − 6κD + 12κ2D2)
(26)

and

〈Vsc,t 〉 = 1

2π2

1

(1 − 6κD + 12κ2D2)

∫ ∞

0
dqq2Vsc,t (q)

{
1

(1 + q2κ2)2
− 2κD

3 − q2κ2

(1 + q2κ2)3

+12κ2D2 1 − q2κ2

(1 + q2κ2)4

}
(27)

with 〈Vl〉 = 0 for l = 0. Note that〈φ1s |φ2s〉 = 〈φ4v|φ5v〉 = 0, which implies that
D = (1/ν + 1/κ)/6.
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For the second excited state, the 2p-state, we use

φ6v(r) = Are−r/2µ (28)

and we obtain

〈T 〉 = Ryd∗a∗2/4µ2 (29)

〈Vl〉 = Ryd∗(a∗2/µ2)l(l + 1)/12 (30)

and

〈Vsc,t 〉 = 1

2π2

∫ ∞
dq q2Vsc,t (q)

1 − q2µ2

(1 + q2µ2)4
(31)

with 〈Vl〉 = Ryd∗ a∗2/6µ2 for l = 1. Our variational wave functions for an attractive test
charge behave asφ6v(r → 0) ∝ rl .

Table 2. Bound-state energiesEmin for a screened attractive test charge for the states 1s(φ4v(r)),
2s (φ5v(r)), and 2p(φ6v(r)) found by the variational method using the LFCG(q) together with
the variational parameters for differentrs values

(1s) (2s) (2p)

rs ν/a∗ Emin/Ryd∗ κ/a∗ Emin/Ryd∗ µ/a∗ Emin/Ryd∗

100 0.500 −0.8162 1.008 −0.0690 1.008 −0.0667
80 0.500 −0.7927 1.012 −0.0471 1.013 −0.0458
60 0.500 −0.7579 1.022 −0.0158 1.025 −0.0134
40 0.501 −0.6980 — —
20 0.503 −0.5619 — —
10 0.513 −0.3711 — —

5 0.558 −0.1339 — —
4 0.598 −0.0586 — —
3.5 0.644 −0.0126 — —-

Within the RPA and using the variational approach we did not find excited states for
rs < 17.8. The Mott density characterized byrsM where the binding energy vanishes is
rsM = 17.8 for the 2s state andrsM = 19.8 for the 2p state. Including the LFC we found
excited states forrs > rsM = 52 for the 2s state andrs > rsM = 54 for the 2p state.
The excited states have small binding energies (see table 2, where our variational results
including the LFC are given). Using the RPA we have checked for the 2s state and the 2p
state that forrs → ∞ we get−0.25 Ryd∗, the binding energy of the unscreened hydrogen
atom. More details on excited states will be published elsewhere.

5. Discussion

5.1. Application

For three dimensions the energy values for the bound states found for the screenedrepulsive
test charge are much smaller than those found for quasi-one-dimensional [5] and two-
dimensional [6] systems. This means that many-body effects for the screening function
in three dimensions are less important than in low-dimensional systems. Our analysis of
the wave function shows that for the ground state the (bound) electron density is greatly
depleted around the charged centre in order to avoid the repulsive Coulomb potential at
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small distances. The bound states are very extended in space due to the repulsive core for
r → 0, (see table 1, figure 3, and figure 5).

Let us assume that we place two negative test charges into a metal and the screening
is provided by the electrons of the metal. Bound states should exist forrs > rsc = 6–8.
Ordinary metals such as Na, Al, and Cu have larger density. However, the alkali metals
K, Rb, and Cs have lower density,rs = 4.9, 5.2, and 5.6, respectively. We conclude that
K, Rb, and Cs arenot very far away from the critical density where bound states can be
expected. Many materials exist which are considered to be strongly correlated. We mention
doped fullerenes, organic conductors, Chevrel phases, heavy fermions, and alloys. Cuprates
are better described as a two-dimensional electron gas withrs > 4.

For the metal-doped fulleride K3C60 with a carrier densityN ≈ 2 × 1021 cm−2

(1 conduction electron per C60 which forms a sphere with a diameter of about 10Å) we
find rs ≈ 9.3 assuming for the effective Bohr radiusa∗ = 0.53 Å. This choice seems to be
justified: experiments [26] indicate that an effective mass ofm∗ ≈ 5me and a background
dielectric constant ofεL ≈ 5 are reasonable values. A Fermi energy of aboutεF = 100 meV
is compatible withrs = 10 anda∗ = 0.53 Å. This estimate shows that strongly correlated
molecular metals withrs & rsc ≈ 6–8 can be found in nature.

As far as we know no definitive conclusions have been derived concerning experimental
results for the importance of many-body effects (exchange and correlation) for attractive
impurities. However, we think that the predictions for attractive impurities are more easy
to verify in experiment. We hope that a systematic study of positively charged impurities in
ordinary metals with 1< rs < 5 could give a definite answer. Doped semiconductors with
3 < rs < 5 are expected to be strongly disordered. The results of the present paper should
be relevant for exciton physics in the metallic regime. Of course, the reduced mass should
be used for the effective mass defining the effective Bohr radius and the effective Rydberg.

Let us recall that bound-state energies of screened attractive impurities are usually
calculated within the variational approach [10, 23–25]. Our method using the matrix
diagonalization is exact. New results for the case of an attractive test charge are the
calculations of Mott’s critical density for excited states and the bound-state energy of excited
states. For the ground state our exact method gives a Mott density in good agreement with
earlier results from the literature where a variational wave function of Hultyén type was
used [24, 25]. The LFC leads to a reduction of the binding energy compared to the results
in the RPA withG(q) = 0.

5.2. Theory and method

In [4] the effective electron–electron interaction potential for two-dimensional systems has
been calculated (using the HA) within the Kukkonen and Overhauser approach [27]. In the
present paper we discussed the screened potential and the test charge–test charge interaction:
the calculated bound states are the bound states of two test charges screened by the electron
gas.

Comparing our results [4] for the (screened) test charge–test charge interaction with
the more profound Kukkonen and Overhauser approach for two-dimensional systems we
conclude that our study of a screened potential gives already a good estimate of the
importance of exchange and correlation for the effective electron–electron interaction,
compare figure 1 in this paper with figure 4 in [4]. Therefore, we believe that our study
of a repulsive test charge has important implications for superconductivity [11] and for the
physics of the Wigner crystal [12] in strongly correlated electron systems. We would like
to point out that we are working with arealistic interaction potential where the strength
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is given by Coulomb’s law. In this sense our theory is free of parameters. Let us finally
note that a correct description of many-body effects via the LFC must be used in any
theory which is intended to be applied to real materials withrs > 1. In this density range
electron–electron interaction effects are strongly modified by exchange and correlation.

One may ask whether the linear screening approximation used in this paper is valid.
We expect that forrepulsive test charges non-linear screening effects are smaller than for
attractive test charges because (i) the wave functions are very extended compared to the
effective Bohr radius (for the repulsive case the extension of the wave function is a factor
of ten larger than for the attractive case, see figure 3) and (ii) the binding energies are
small compared to the effective Rydberg. Forattractive test charges non-linear screening
effects are important: for a recent review concerning a proton in jellium see [28]. For
instance, Mott’s critical density is found asrsM = 2.06 while we foundrsM = 2.5 using
the matrix diagonalization with the LFC. It is clear that our values obtained for the binding
energy can only be considered as a qualitative estimate because we used the linear screening
approximation.

For theattractivecase one might expect that at very low-density a test charge may form
a D− state (two electrons bound by a positively charged impurity). This problem requires
the inclusion of two electrons in the Hamiltonian and cannot be discussed within the present
one-electron approach.

6. Conclusion

In this paper we have studied bound states of negative and positive test charges located in
the three-dimensional electron gas of given density. For an attractive test charge many-body
effects included in the screening function reduce the binding energy of the ground state and
of the excited states. A variational wave function with exponential long-distance behaviour
is most appropriate for an attractive test charge.

At low electron densityrs > rsc ≈ 6–8 we find bound states for a repulsive test charge.
The binding energy of the ground state saturates at low-density at about−0.065 Ryd∗.
Such states might be observed in strongly correlated metals and might be relevant for
pairing (superconductivity) between equally charged carriers. For a repulsive test charge a
variational wave function with Gaussian long distance behaviour is most appropriate.

Two methods have been developed to calculate the binding energies and the wave
functions of the bound states in systems where the interaction potential in the momentum
space is known in analytical form. In general we found for the ground state and the excited
states very good agreement between the two methods. The variational approach is, from a
practical point of view, the most important method because it can be applied very easily
to more complex situations. Our result that bound states exist of a screened negative test
charge using the RPA, the HA, and two different forms for the LFCs indicates that attraction
can be expected in the three-dimensional electron gas. This prediction should be tested by
experimenters. Our theoretical considerations forrs < 5 should apply to normal metals
while rs > 5 is realized in molecular metals.
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[16] Flügge S 1974Practical Quantum Mechanics(Berlin: Springer) problems 76–78
[17] Gradshteyn I S and Ryzhik I M 1980 Table of Integrals, Series, and Products(New York: Academic)
[18] Gold A 1996 unpublished
[19] Perdew J P and Yang Y 1992Phys. Rev.B 45 13 244
[20] Shaw R W Jr 1970J. Phys. C: Solid State Phys.3 1140

Kimball J C 1973Phys. Rev.A 7 1648
[21] Yasuhara H 1972Solid State Commun.11 1481
[22] Bowen C, Sugiyama G and Alder B J 1994Phys. Rev.B 50 14 838

Moroni S, Ceperley D M and Senatore G 1995Phys. Rev. Lett.75 689
[23] Krieger J B and Nightingale M 1971Phys. Rev.B 4 1266
[24] Greene R L, Aldrich C and Bajaj K K 1977 Phys. Rev.B 15 2217

Aldrich C 1977Phys. Rev.B 16 2723
[25] Borges A N O, Hipolito O and Campos V B 1995Phys. Rev.B 52 1724
[26] Palstra T T and Haddon R C 1994Solid State Commun.92 71
[27] Kukkonen C A and Overhauser A W 1979 Phys. Rev.B 20 550
[28] Hoffmann G G and Pratt R P 1994Mol. Phys.82 245


