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Abstract. In the low-density regimbound statebetweemegative(repulsive) test charges are
obtained when many-body effects (exchange and correlation) are incorporated in the screening
function of the three-dimensional electron gas via the local-field correction. Thédeher
equation is solved in the momentum space by diagonalizing the corresponding matrix. We also
perform variational calculations and find good agreement between the two methods. For high
electron density; < ry. &~ 6-8 (5 is the density parameter) no bound states are found. Below

a critical densityr; > ry. the number and the energy of bound states increase with decreasing
electron density. For largg the binding energy for the ground state saturates A€065 Ryd .

We discuss the wave functions of the ground state and of the lowest excited states. We also
present results for the effects of exchange and correlation for a positive (attractive) test charge
and we discuss results for the ground state and excited states.

1. Introduction

It is well known that a test charge in a three-dimensional electron gas is screened at
large distances [1,2]. In addition, the screened potential exhibits Friedel oscillations [3].
One could ask whether a bound state can occur in the attractive part of these Friedel
oscillations. Friedel oscillations occur already within the framework of the random-phase
approximation (RPA). Recently, it was argued that many-body effects, described by the
local-field correction (LFC), strongly modify the screening properties of a two-dimensional
electron gas at low density and enhance Friedel oscillations [4]. In fact it was shown that
for a negative test charge many-body effects give rise to bound states in the low-density
range of the quasi-one-dimensional [5] and the two-dimensional [6] electron gases. In this
paper we study the three-dimensional electron gas and we show that bound states exist,
too. However, the binding energy is small compared to the effective Rydberg. In order
to describe many-body effects we use the concept of the LFC for the dielectric screening
function in the formulation of Singwi and coworkers [7]. (For a review, see [8]). A sum-
rule approach to this theory was published recently where the LFC was given in analytical
form [9].

For a positive test charge screened by a three-dimensional electron gas a bound state
can exist only for a density lower than a critical one, which is Mott's (M) critical density
Ny [10]. The possibility of bound states for equally charged particles was suggested in the
literature in the early sixties and studied for a short-range potential [11]. In the low-density
region a Wigner crystal is expected [12]. Paired electron crystals have been predicted
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recently in the low-electron-density regime [13]. In fact, we show that in the low-density
regime the screened potential of a negative test charge becomes strong enough to produce
a bound state with another negative test charge.

We believe that our results for a repulsive screened test charge are novel and these
results are discussed in detail in the present paper. The screened attractive test charge has
been discussed before in the literature and, therefore, we describe very briefly some new
results, mainly concerning excited states.

The paper is organized as follows. In section 2 we describe the model and the theory.
Our results for repulsive test charges concerning the exact method to solve thdiSgér
equation and the variational approach are described in section 3. Some results for a screened
positively charged impurity are presented in section 4. We comment on our results in
section 5 and conclude in section 6.

2. Model and theory

2.1. The screened Coulomb interaction

As the model we use a three-dimensional electron gas with a parabolic dispersion. Distances

are expressed in units of the effective Bohr raditis= ¢, /m*e? with the Planck constant

h = 2x. Wave numbers are expressed in units of the inverse Bohr raditfsis the

effective mass and, is the dielectric constant of the background. Energy values are

expressed in units of the effective Rydberg Ryd m*e*/2¢2. The density parametes

is given byr, = [3/47 Na*']"/3 andr,a* is the Wigner—Seitz radiusy = k3/372 is the

three-dimensional electron density ahdis the Fermi wave number withpa* = 1.92/r,.

The Fermi energy  is given aser/Ryd* = (97/4)%/3/r? = 3.683/r2. We consider a test

charge screened by the electron gas of dengityThe motivation for using a test charge is

that the screened potential is known if the LFC for charge density fluctuations is known.
The Coulomb interaction potential in the Fourier space between a (fixed) negative test

charge and another negative test charge is repulsive and givén(py = 4re?/s;q°.

If the interaction is screened by an electron gas the screened interaction potentia)

is written asV,.,(q¢) = Vi(q)/e(g). In section 4 we study an attractive test charge with

Vi(q) = —4me?/e;q%. The dielectric functior (¢), calculated within the RPA and including

the LFC G(q), is given by [1, 2]

1 V(g)Xo(g) )
e(q) 1+ V@Il - G@]Xo(q)
Xo(gq) is the Lindhard function in three dimensions [1] aldg) is the bare interaction
potential V(q) = 4mwe?/e q?. For G(g) = 0 one obtains the RPA expressiely) =
1+ V(g)Xo(g) [1]. In our calculation we use fo6G(g) the sum-rule approximation [9]
of the Singwi-Tosi—Land—-8Jjander (STLS) approach [7]. Analytical results have been
obtained within a generalized Hubbard form for the LFC as [9]

Glg) = r* 0.8467"
* 2.18842C13(ry) + q2Cas(ry)

wheregg = 121/4/rf‘/4a* is a characteristic wave number. In the Hubbard approximation
(HA) [14] only exchange effects are included. Within the HA for the LFC the coefficients
for the LFC are given byCisya = 1.096:7* and Cogya = 1.69¥* [9]. Equation (2)
contains exchange and correlation effects via the coefficiépiig,) and C,3(ry) (two-sum-

rule approach). The STLS approach does not satisfy the compressibility sum rule [1]. This

)
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is a well known defect of this theory [7]. In equation (19) we describe an Gk (G) which

satisfies the compressibility sum rule and gives results quantitatively similar to those of the
calculation withG(q).
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Figure 1. Screened Coulomb potentidi.,(r) of a repulsive test charge against distamce

for ry = 10 as the solid line. The dotted line represents the unscreened potential. The dashed
line represents the RPA approximation. In the inset we skaw(r,,) andr,, versusrs. The
dashed—dotted lines represent results calculated by @&iGg) as given in equation (19).

In the real space the screened Coulomb interaction is given by

1 [ .
Ve (r) = ﬁ/o dgq sin(gr) Vsc..(q). (3

A representative example fov,..(r) is shown in figure 1 forr;=10 with a minimum
Vier(rm) = —0.093 Ryd atr,, = 6.3a*. Note that the attractive part is strongly enhanced
by the LFC as compared to the RPA one. The corresponding values fer 20 are
Vieu(rm) = —0.097 Ryd andr, = 9.3a*. A systematic study of, and V,.,(r,) versus

ry (see the inset in figure 1) shows th@dt. ,(r,,) presents a weak maximum and saturates
at larger, at about—0.09 Ryd'. V;.,(r,,) becomes very small for, < 2. We note that

rn IS quite large in the low-density range, which means that bound states, if any, are very
extended.

Friedel oscillations of the screened potential are shown in the right-hand side of figure 1.
Many-body effects increase the amplitude of Friedel oscillations; however, the effect is
relatively small: the enhancement is about a factor tworfo= 10. On the other hand
we conclude from figure 1 that the attractive minimum within the RPA,at= 8.54*
with Vi.,(r,,) = —0.008 Ryd is enhanced by many-body effects by a factor of 12:
Vier(rm) = —0.0923 Ryd. We shall show that for, = 10 the binding energy for the
ground state is-0.0207 Ryd.

In order to show that bound states exist in the screened potential one has to solve the
Schiddinger equation for a test charge moving in the external poterifial(r) is a central
potential and only depends en Accordingly, the angular dependence of the wave function
in the real space and in the momentum space is described by spherical harie@ice).

It is immediately clear that states with given angular momentuare degenerate with
respect to the quantum number and the degeneracy jg = (20 + 1). However, states
with different values of are not degenerate, as in the bare attractive hydrogen atom. For
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the screened potential this accidental degeneracy [15] found in the hydrogen atom is lifted.
One can use for the wave functigp(r) = ¢,,;(r) Y, (¢, 8) and one finds fokp, ;(r)

the radial Schidinger equation for the effective potentiélss (r) = Vi(r) + Vi, (r) with

Vi(r) = I1(I + 1)/2m*r2. Verr(r) is strongly repulsive at small distances,;s(r —

0)/Ryd* = I(I + D)a*?/r? 4+ 2a*/r. From general arguments [15] it is clear that for

[ > 0 the behaviour of the wave function for smallis determined byV;(r). As for

the hydrogen atom we conclude that fos 0 ¢, ;(r — 0) oc r. In the momentum space

V(@) = ¢n1(@) Ym0, ¢) and ¢, (g — 0) o« ¢' [16]. In the following we will use as

notation¢ or ¢, for ¢, ;.

2.2. The Schodinger equation in momentum space

The Schédinger equation for the screened potential can only be solved numerically and
we choose to solve the S¢éitinger equation in the momentum space. The reason for this
is that the screened potential is readily given in momentum space (see equation (1)). As
we will show below, the present method is accurate and fast enough and might be used
for potentials which do not have spherical symmetry. The &tihger equation in the
momentum space is given by

2 1
T v+ gy / g Vier(q — @U(G) = EW(q). @)

Using spherical coordinates, we have discretized the integral gven equation (4)
according to a set ofg(, 6',¢’). The sampled values ig’, 6’, and ¢’ are those used

in Gauss routines for integration. Two, three, or four adjacent intervalg,if’, and ¢’

are used in order to correctly sample the integral. In this way the Hamiltonian operator in
equation (4) is discretized under the form of a matrix. The order of this matrix is 3208 (2
points for 0< ¢’a* < 2, 2x 5 points for 0< 6’ < & and 4x 5 points for 0< ¢’ < 27). The
eigenenergy and eigenfunction problem are then solved numerically by a standard method
for matrix diagonalization.

We have checked the accuracy of our method by comparing the eigenfunctions and
eigenenergies thus obtained with those of known problems, such as the three-dimensional
attractive Coulomb problem. Not only eigenenergies but also eigenfunctions are calculated
with a good accuracy. Note, however, that any discretization introduces a systematic lifting
of the degeneracy because it acts as a perturbation to the true Hamiltonian, which is defined
in the continuous momentum space. The lifting of the degeneracy, however, is small. In
addition, as in other numerical solutions, the bound states are less accurately determined
when they are more excited.

3. The screened repulsive test charge

3.1. Matrix diagonalization

We first discuss the energy values for bound states vetsuBor r;, < 6 no bound states
have been found. For § r; < 11 we find one bound staté £ 0, g; = 1). Its energy is
given in the inset of figure 2. The binding energy approaches zere, fer r,, = 6 and

rsc IS the critical density parameter. Our variational results are also shown in the inset and
give a smaller binding energy; where the binding energy vanishes 7. It is known that

the variational method gives too small binding energies, especially when the binding energy
becomes small. For, > 11 we find excited bound states. Our results for the bound states
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Figure 2. Bound state energie&,,,, for a screened repulsive test charge found by matrix
diagonalization against, as dots(! = 0), squareg! = 1), triangles(/ = 2), and barql = 3).
The variational results,,;, (characterized by:,/) are shown as solid lines. In the inset we
show the ground state energy versudor 5 < r; < 11 with a logarithmic energy scale.

obtained with the method of matrix diagonalization versu$0 < r, < 30) are shown in
figure 2 as solid symbols. The solid lines represent the variational calculation, as discussed
in subsection 3.2. Figure 2 contains the complete information about the ground state and the
excited states. We denote the states by two quantum numbers, the radial quantum number
n, and the angular quantum number

With our numerical method we also obtain all information about the eigenfunctions.
The eigenfunctions, which we obtain numerically, are the eigenfunctjggsé, ¢) in the
momentum space. In order to characterize the angular momehufnthe bound states
three methods have been applied: (i) the (quasi-) degeneracy of the eigenenergy, (ii) the
behaviour of the wave function at small wave numbers, and (iii) the angular dependence of
the wave function. However, details are not given in this paper.

The eigenfunctions can be Fourier transformed to obtain the eigenvectors in the normal
space. This method has been applied; however, the numerical inaccuracy grsfizee
is reinforced in ther-space. Therefore, we do not give here the results obtained with this
method. Instead, using th@, ¢) symmetry of the angular part of the wave function one
can show that [16]

1 oo
¢i1(r) o ;/O dg'q’ji(q'r)i(q) ®)

and j;(x) is the spherical Bessel function of the first kind of order For the ground
state wave function one has to uggx) = sin(x). It follows immediately thatpy(r —
0) = constant. In fact, in order to obtain the radial dependence)@f6, ¢) one can
use in equation (5)(q, 0, ¢’) instead of¢;(¢’). Numerical results for the ground state
W(r, 0, ) versusr are shown in figure 3 for;, = 20. Forr = 0 we find a very small finite
value and we cannot decide whether this is a true effect or a numerical error. However,
W(r, 0, ) = ¢(r)Yoo(0, ) shows a large peak at abott = 10a*, which corresponds to
the valuer,,, where the screened potential shows a strong minimum.

The ground-state wave function in tliespace is shown in figure 4. Note that near
ga* = 0.4 the wave functionl(q, 6, ¢) = ¢o(q)Yoo(0, ¢) changes its sign and it decays
very rapidly forga* > 1. The numerical results are in very good agreement with our results
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Figure 3. Wave functionJ(r) of the ground statén, = 1,/ = 0) for a screened repulsive test
charge for;=20 against. The solid dots are the numerical results of the matrix diagonalization
and the solid line represents the variational calculation with 7.54a* andk; = 2.80.
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Figure 4. Wave function{)(¢) of the ground statén, = 1,/ = 0) for a screened repulsive test
charge for;=20 against;. The solid dots are the numerical results of the matrix diagonalization
and the solid line represents the variational calculation with 7.54a* andk; = 2.80.

obtained with a variational wave function (see the solid line in figure 4) as described in the
next section.

3.2. The variational wave function
Using a trial wave functiorp, (r) the variational energy¥,,, is given by

Evar - (T) + (Vl> + (Vsc,t) (6)
where (0) = fo°° drr2¢,(r)0¢,(r). For certain simple wave functions theintegrals for

O =T, V,andV,., can be calculated analytically.
The screened potential near the minimum“atan be described by a one-dimensional

oscillator potential. Therefore we use as a variational wave function
$10(r) = Arki/Zer/2 (7)

with the normalization constanf given by A2 = 2/T'[(k1 + 3)/2]e® . ki and «
are the variational parameters. It should be noted thatr) describes states with a
certain angular momentuth the radial Schidinger equation contains the paft(r) and
Pr) = ¢1,(M Y10, 9). ¢1,(r) has one noder, = 1 atr = 0 if &y > 0. Solving
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the variational problem with this wave function gives bound states with quantum numbers
n,=1andl =0,1, 2, 3,.... Radial wave functions with two nodes have a small binding
energy and are discussed later.

We obtain for the radial wave function with. = 1 and characterized by; and« the
following analytical results:

(T) = Ryd*(a*?/a?)(2k1 + 3)/(2k1 + 2) (8)
(Vi) = Ryd*(a*?/a®)2( + 1)/ (k1 + 1) 9)
and
1F1[(3+ k1)/2; 3/2; —q2a? /4]
e(q) ’

1F1(x; y; z) is the degenerate hypergeometric function [17]. Note ttia} together with

the LFC depends on,. Consequently, the variational parametefandw, at E = E,,;;,,
depend onr; and on the form chosen for the LFC. This variational approach can be easily
applied when other expressions for the LFC become available in the literature. Our result
obtained forl = 0,1, 2... are given in figure 5. Note that the states are very extended in
the normal space as is shown by the large values found.fdn fact, figure 5 is the only
figure where the reader can find information about the extension of the wave function as
function ofr,: the wave functionpy, (r) shows a maximum at* given byr* = (k1/2)%?a.

4 00
(Vier) = ~Ryd'a* / dg (10)
s 0

ola*

Figure 5. Minimal energyE,,;, with llev (r) and variational parametessandk; for a screened
repulsive test charge againstfor n, =1 and/ =0, 1, 2, 3.

For the states with two nodes = 2 we use for the radial wave function

$ou(r) = B(rH/2 — Crlo/2) e/, (11)
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This radial wave function describes the states wjth= 2 andl =0, 1, 2, .... The following
analytical results for the variational energy are derived:

a*2

(T) = Ryd*?BzﬂkHl{r([kz +1]/2)(2kz + 3) + C?B** T ([ks + 11/2)(2k3 + 3)
+CBRI2RI2T (k)2 + ka/2 + 1]/2) (k3 /2 + k3/2 — koks — 2k — 2kz — 6))
(12)
*2
(Vi) = Ryd*%l(z + D B2B* I ([k2 + 1]/2) + C2B*72T ([ks + 1]/2)

—2CB*/2RI2D ([kp /2 + k3/2 + 1]/2)) (13)

(Vi) = ZRyda’ 52 /O dq%q){ﬂ“”r([kz 3121 PG+ k)/2: 3/2: —q2B2/4]

—2CpR/2HI 23D (k)2 + kg /2 + 3]/2)1FAl(6 + ko + k) /4; 3/2; —q°B% /4]
+C2B573T ([ks/2 + 3]/2)1 Fal (B + ka) /2; 3/2; —q2B2/4]). (14)

With the normalization conditiorig,,|¢2,) = 1 we find

1/32 — {ﬁk2+3r([k2 + 3]/2) _ 2C,3k2/2+k3/2+3r([k2/2 + k3/2 + 3]/2)
+C2BR T30 ([ks + 3]/2)}/2. (15)

The condition forC follows from the fact that¢;,|¢2,) = 0 and we obtain

B [ 2022 r/“‘““ T([k1/2 + k2/2 + 3]/2)

C a2+ 2 ['([k1/2 + k3/2+ 3]/2)

Our resultsk,,;, of the variational approach far, = 1 andn, = 2 are shown in figure 2.

Using the spherical Bessel functionpgx) the wave functionsp,(r) can be Fourier
transformed. One obtains [17]

1 [ )
bi1(q) 5/0 drrji(gr)gi(r). (17)

For! = 0 the wave function in the momentum space is giveplly — 0) =constant. For

n, = 1 andn, = 2 the variational wave functions in the momentum space can be expressed
in terms of degenerate hypergeometric functions [17]. We only give the explicit results for
n, = 1 andl = 0 because equation (17) can be used directly to calcgjéie. The Fourier
transforms of the variational wave functions can be compared directly with the results of
the matrix diagonalization. For the ground-state wave function wite= 1 and/ = 0 we

find the explicit result [17]

$1,(q) o1 F1[ (6 + k1) /4; 3/2; —q%a?/2). (18)

Our results for the variational ground-state wave function-foe 20 are shown in figure 4
and agree very well with the numerical results. We mention that the lpdgpendence is
in very good agreement with the numerical results.

For the first (1p) excited state the variational results for the wave function in the
momentum space are shown in figure 6 and are in reasonable agreement with the
corresponding results of the matrix diagonalization. The variational result for-the
dependence (inset) and thedependence of the 2s state wave function with= 2 and
[ = 0 are shown in figure 7 together with numerical results.

We have also applied the variational method with the variational wave function
¢, (r) = Arfa/2 exp(—r/28) wherek, = 1, 2, 3, 4 ands is the variational parameter. These
wave functions describe the staies= 1 and/ =0, 1, 2, .... This wave function represents
for k4 = 0 and§ = a* the ground-state wave function of the hydrogen atom with an

(16)
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Figure 6. Wave function)(¢) of the first excited staté:, = 1,/ = 1) for a screened repulsive
test charge for;, = 20 againstg. The solid dots are the numerical results of the matrix
diagonalization and the solid line represents the variational calculationawith7.80z* and

k1 = 3.45.
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Figure 7. Wave functionJ(¢) of the excited statén, = 2,/ = 0) for a screened repulsive
test charge fory;, = 30 againstg. The solid dots are the numerical results of the matrix
diagonalization and the solid line represents the variational calculation gvita 10.25q*,

ko = 4.482 andkz = 4.480. In the inset we shO\(\llJ(r)|2 for the 2s state (solid line) and the
1s state (dashed line).

unscreened attractive Coulomb potential. The binding energy obtainedgwith) is in
good agreement (8%) with results obtained by uspagr) (figure 2). Nevertheless, the
energy values found with the Gaussian variational fgr(r) are somewhat lower than for
the exponential form.

3.3. Different approximations for the LFC

We mention that one does obtain bound states within the HA. Some values for the binding
energy of the ground state for largecalculated withp,, () are given in table 1. Note that

the binding energies are much smaller than if calculated with the full LFC, where exchange
and correlation effects are included. In table 1 we present some results for very-large
Note that forr, = 100 the Fermi energy is very smadly = 3.7 x 10~* Ryd*, and disorder
effects are certainly relevant in real systems. Within the HA a systematic study versus
showed that bound states only exist for> r,.y4 = 12.6.
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Table 1. Ground state energies,,;, and variational parameters and k; for a screened
repulsive test charge found by the variational method with(r) using the LFC, the Hubbard
approximation (HA), and the RPA for different density parameters. The vglyevhere the

ground-state energy vanishes, is also given.

Emiu/Rydk(a/a*lkl) Emln/Ryw (Ol/a*lkl) Emin/Ryd* (Ol/d*lkl)

s LFC (rxz‘ = 72) HA (rxz‘.HA = 126) RPA (r.vc,RPA = 575)
100 —0.0607(15.0/6.6) —0.0109(217|6.3)  —0.000489(34.9/4.8)
80 —0.0629(13.6/5.9) —0.0116(19.4/5.7) —0.000361(31.7]4.2)
60 —0.0658(118/5.2) —0.0124(168/49)  —0.000067(28.8|3.4)
40 —0.0657(8.9/4.1) —0.0127(13.9/3.9) —
30 —0.0617(8.8|3.6) —0.0120(12.2|3.3) —
20 —0.0515(7.5/2.8) —0.0089(10.6/2.4) —
15 —0.0416(6.82.3) —0.0039(10.0/1.8) —

10 —0.0195(6.4|1.6) — —

Even within the RPA we find a bound state at very low density, however, the binding
energy is extremely small. Some results are given in table 1. Usin@) we have studied
in detail the behaviour of the binding energy of the ground state agairstd found that
bound states only exists fef > r,.rpa = 57.5. Including the LFC we found bound states
for ry > r. = 6. We conclude that,.gpa/r;c = 9.58 which means tha¥./N.gps = 880.

The calculations reported in this subsection show that the existence of a bound state in
a screened repulsive potential is not a special property of the LFC. In faof (fpr = 0
the bound state is induced by Friedel oscillations. Howeverrfee 100 the bound-state
energy value is increased by a factor of 148 if many-body effects via the LFC are included.

In order to show that the chosen form of the LFC is notaainhoctrick to produce a
bound state for a screened repulsive test charge a more elaborate three-sum-rule approach
for the LFC was formulated [18]. There the LFC is given by

Gulg) = r¥* 0.8464° .
' 2.18875C13:(ry) 4 ¢?Caae(rs) — qoq Caac(rs)

The coefficientCi3.(ry) is determined by the compressibility sum rule [1] using the
compressibility according to the analytical expression available in the literature [19].
Cas.(ry) is fixed by the Shaw—Kimball relation [207(¢ — o0) = 1 — g(0) using the
sum-rule approachCas.(r;) = 0.8463’/4/[1 — g(0)] [9]. For g(0) we use the analytical
expression [21(0) = [z/11(2)]?/8 with z = 1.6292. I1(z) is the first-order modified
Bessel function. Cs3.(ry) is calculated using the relation between the pair-correlation
function g(0) and the static structure factor. Fey = 10 we obtainCi3. = 2.384,

Cos. = 4.778, andCs3. = 3.554. It can be shown [18] that the LFG, (¢) reproduces the
results of recent Monte Carlo calculations [22].

We have studied/,.,(ry) andry versusr, with the LFC as given in equation (19)
and our results are shown in the inset of figure 1 as dashed—dotted lines, £dr0 the
screened potential is slightly less attractive whigis practically unmodified. The dashed—
dotted line in figure 1 represents the screened poteWtialr) for r; = 10 calculated with
G:(q)-

Our results for the bound-state energies using the LFC in equation (19) against
are shown in figure 8. At, = 20 the binding energies are reduced by about 8% if
compared with the results obtained with the two-sum-rule approach for the LFC (compare
with figure 2). The critical density parameter where the binding energy of the ground

(19)
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Figure 8. Bound-state energieg,,, for a screened repulsive test charge found by matrix
diagonalization against, as solid dots. The variational resuli,;, are shown as solid lines.
The LFC according to equation (19) is used in the calculation.

state vanishes increases from = 6 to r,. = 8. This is the result obtained by matrix
diagonalization. With the variational method we find = 9 if we useG.(q) andr,. = 7
for G(g).

Together with our analysis of bound states in a screened repulsive potential using the
RPA and the HA for the LFC (see table 1) we conclude that the detailed form of the LFC
is important for a quantitative estimate Qf and the binding energy neay.. However, at
lower densityr, > 12 the detailed form of the LFC is of minor importance if exchange and
correlation effects are taken into account in the LFC within an approximative approach.

4. The screened attractive test charge

4.1. The attractive test-charge potential

Our two methods (the matrix diagonalization and the variational approach) can be easily
applied for an attractive test charge. The effects of screening within the RPA [23, 24] and
including the LFC [25] have already been considered in the literature. Nevertheless, we
want to point out that in the literature the variational method for the ground state only has
been applied and that the method of the matrix diagonalization is more general. Moreover
we also discuss excited states. For the classification of the states we use the notation of the
hydrogen atom withe and!.

The screened potential for an attractive test charge verdggsshown in figure 9 for
ry = 5. Note that already for, = 5 differences are seen between the screened potential
according to the RPA and when the LFC is taken into account. Many-body effects via the
LFC lead to a weaker attractive potential; therefore, the binding energy is reduced.

4.2. Matrix diagonalization

The numerical results for the 1s state verguare shown in figure 10 within the RPA, the

HA, and by using the LFC. Note that the finite LFC reduces the binding-state energy. The
effect of the LFC is quite large for 2 r; < 6, which is the density range of simple metals.
With increasing density the binding energies decrease due to screening effects and vanish
at a critical density, which is Mott's density/,, [10].
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VSC,t (r)/ Ry*

Figure 9. Screened Coulomb potenti&l.,(r) of an attractive test charge against distance
for r;, = 5 as the solid line. The dotted line represents the unscreened potential. The dashed
line represents the RPA approximation.

bound state energy (Ry*)

Figure 10. Ground-state energies,,,, for a screened attractive test charge found by matrix
diagonalization against, as solid dots. The variational result,;, (characterized by the
variational parameter) are shown as solid lines. The HA is shown as the dashed line.

We mention thatvY3q* = 0.62/r, and, accordinglyN,, is related to a critical density
parameter-,,. For the ground state we obtained, = 1.7(Nj4/3a* = 0.36) by using the

RPA andr,y = 2.5 (N1/°a* = 0.25) by using the LFC.

4.3. The variational approach

In general we find excellent agreement of the matrix diagonalization with the variational
energy obtained by using the variational method. For the ground state we use

bar(r) = A% (20)

With this wave function for the 1s state we obtain

d*a*Z
(T) =Ry 4,2 (21)
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*2
vy =Ry 1D (22)
v 2

and

1 oo
Vier) = =— dgq? V. — . 23

Note that(V;) = 0 for [ = 0 (1s state). Equation (23) is in agreement with the variational
method used in [23]. Our results for the ground-state energy obtained with the variational
method are shown in figure 10. Results within the HA are also shownrFerl.5r, a

very good agreement is obtained between the two methods. For Mott's critical density we
deriveryy = 2.12 (N;/%a* = 0.29) within the RPA andr,y, = 3.3 (N;/%a* = 0.19) if the

LFC is used.

y(q) (arb. u)

Figure 11. Wave function)(¢) of the 1s state for a screened attractive test charge, fer 10
againsty when the LFC is taken into account. The solid dots represent the numerical results of
the matrix diagonalization and the solid line represents the variational calculation according to

equation (24) withv = 0.51%*.
The Fourier transform o4, (r) is given by [17]
¢av(q) o 1/ (L+ 4g%v)>%. (24)

In figure 11 we showpy,(q) versusq for r; = 10 with the LFC taken into account. The
results obtained with the method of matrix diagonalization are also shown.
For the first excited state, which is the 2s state, we use

¢5,(r) = A(1—rD) e"/*, (25)
The different energies for the variational energy are given by
a*? (1— 2« D + 42D?)

Ty = Ryd" 26

(1) =Ryd 2 1~ 6eD + 12c2D?) (26)

and

1 1 0 1 3 — q°?

Vsc' = 5 5 d ZVSC — 2D

Veerd = 5 20 6D + 12/<21)2)/0 14 "(q){ (14 q2¢2)2 (1+ g22)3
+12/<2D21_7612K2 27)

(l+ qu2)4

with (V;) = 0 for I = 0. Note that(¢i|p2) = (dalds,) = 0, which implies that
D= (1/v+1/x)/6.
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For the second excited state, the 2p-state, we use

Peu(r) = Are /2 (28)
and we obtain
(T) = Ryd‘a*?/4u° (29)
(Vi) = Ryd*(a*?/u?)I(l + 1)/12 (30)
and
B 1 o8] ) 1— qZMZ
(Vser) = ?/ dg q Vsc,t(‘])m (31)

with (V) = Ryd*a*?/6u? for I = 1. Our variational wave functions for an attractive test

charge behave ags, (r — 0) o '

Table 2. Bound-state energids,,;, for a screened attractive test charge for the statég4l¢r)),
2s (¢5, (1)), and 2p(¢e, (r)) found by the variational method using the LEZq) together with
the variational parameters for different values

(1s) (2s) (2p)
Ty v/a* EninlRyd*  «k/a* EninlRyd"  w/a* E,in/Ryd*
100 0.500 —0.8162 1.008 —0.0690 1.008 —0.0667
80 0.500 —0.7927 1.012-0.0471 1.013 -0.0458
60 0.500 —0.7579 1.022 —0.0158 1.025-0.0134

40 0.501 —0.6980 — —
20 0.503 —0.5619 — —
10 0.513 -0.3711 — —
5 0.558 —0.1339 — —
4 0.598 —0.0586 — —
3.5 0.644 -0.0126 — —

Within the RPA and using the variational approach we did not find excited states for
ry < 17.8. The Mott density characterized by, where the binding energy vanishes is
remw = 17.8 for the 2s state and,, = 19.8 for the 2p state. Including the LFC we found
excited states for; > r, = 52 for the 2s state and, > r;); = 54 for the 2p state.
The excited states have small binding energies (see table 2, where our variational results
including the LFC are given). Using the RPA we have checked for the 2s state and the 2p
state that for;, — oo we get—0.25 Ryd', the binding energy of the unscreened hydrogen
atom. More details on excited states will be published elsewhere.

5. Discussion

5.1. Application

For three dimensions the energy values for the bound states found for the saegarisive

test charge are much smaller than those found for quasi-one-dimensional [5] and two-
dimensional [6] systems. This means that many-body effects for the screening function
in three dimensions are less important than in low-dimensional systems. Our analysis of
the wave function shows that for the ground state the (bound) electron density is greatly
depleted around the charged centre in order to avoid the repulsive Coulomb potential at
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small distances. The bound states are very extended in space due to the repulsive core for
r — 0, (see table 1, figure 3, and figure 5).

Let us assume that we place two negative test charges into a metal and the screening
is provided by the electrons of the metal. Bound states should exist ferr,. = 6-8.
Ordinary metals such as Na, Al, and Cu have larger density. However, the alkali metals
K, Rb, and Cs have lower density, = 4.9, 5.2, and 5.6, respectively. We conclude that
K, Rb, and Cs areot very far away from the critical density where bound states can be
expected. Many materials exist which are considered to be strongly correlated. We mention
doped fullerenes, organic conductors, Chevrel phases, heavy fermions, and alloys. Cuprates
are better described as a two-dimensional electron gasrwith4.

For the metal-doped fulleride 4Cso with a carrier densityN ~ 2 x 10%* cm
(1 conduction electron pereg which forms a sphere with a diameter of about Apwe
find ry, &~ 9.3 assuming for the effective Bohr radiu$ = 0.53 A. This choice seems to be
justified: experiments [26] indicate that an effective mass:bf~ 5m, and a background
dielectric constant of, ~ 5 are reasonable values. A Fermi energy of abgut 100 meV
is compatible withr; = 10 anda* = 0.53 A. This estimate shows that strongly correlated
molecular metals withr, = r;. ~ 6-8 can be found in nature.

As far as we know no definitive conclusions have been derived concerning experimental
results for the importance of many-body effects (exchange and correlation) for attractive
impurities. However, we think that the predictions for attractive impurities are more easy
to verify in experiment. We hope that a systematic study of positively charged impurities in
ordinary metals with k< r; < 5 could give a definite answer. Doped semiconductors with
3 < ry < 5 are expected to be strongly disordered. The results of the present paper should
be relevant for exciton physics in the metallic regime. Of course, the reduced mass should
be used for the effective mass defining the effective Bohr radius and the effective Rydberg.

Let us recall that bound-state energies of screened attractive impurities are usually
calculated within the variational approach [10,23-25]. Our method using the matrix
diagonalization is exact. New results for the case of an attractive test charge are the
calculations of Mott’s critical density for excited states and the bound-state energy of excited
states. For the ground state our exact method gives a Mott density in good agreement with
earlier results from the literature where a variational wave function of aoltyype was
used [24, 25]. The LFC leads to a reduction of the binding energy compared to the results
in the RPA withG(g) = 0.

5.2. Theory and method

In [4] the effective electron—electron interaction potential for two-dimensional systems has
been calculated (using the HA) within the Kukkonen and Overhauser approach [27]. In the
present paper we discussed the screened potential and the test charge—test charge interaction:
the calculated bound states are the bound states of two test charges screened by the electron
gas.

Comparing our results [4] for the (screened) test charge—test charge interaction with
the more profound Kukkonen and Overhauser approach for two-dimensional systems we
conclude that our study of a screened potential gives already a good estimate of the
importance of exchange and correlation for the effective electron—electron interaction,
compare figure 1 in this paper with figure 4 in [4]. Therefore, we believe that our study
of a repulsive test charge has important implications for superconductivity [11] and for the
physics of the Wigner crystal [12] in strongly correlated electron systems. We would like
to point out that we are working with gealistic interaction potential where the strength
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is given by Coulomb’s law. In this sense our theory is free of parameters. Let us finally
note that a correct description of many-body effects via the LFC must be used in any
theory which is intended to be applied to real materials wjtl- 1. In this density range
electron—electron interaction effects are strongly modified by exchange and correlation.

One may ask whether the linear screening approximation used in this paper is valid.
We expect that forepulsivetest charges non-linear screening effects are smaller than for
attractive test charges because (i) the wave functions are very extended compared to the
effective Bohr radius (for the repulsive case the extension of the wave function is a factor
of ten larger than for the attractive case, see figure 3) and (ii) the binding energies are
small compared to the effective Rydberg. Ftractive test charges non-linear screening
effects are important: for a recent review concerning a proton in jellium see [28]. For
instance, Mott's critical density is found asy, = 2.06 while we foundr,,, = 2.5 using
the matrix diagonalization with the LFC. It is clear that our values obtained for the binding
energy can only be considered as a qualitative estimate because we used the linear screening
approximation.

For theattractive case one might expect that at very low-density a test charge may form
a D~ state (two electrons bound by a positively charged impurity). This problem requires
the inclusion of two electrons in the Hamiltonian and cannot be discussed within the present
one-electron approach.

6. Conclusion

In this paper we have studied bound states of negative and positive test charges located in
the three-dimensional electron gas of given density. For an attractive test charge many-body
effects included in the screening function reduce the binding energy of the ground state and
of the excited states. A variational wave function with exponential long-distance behaviour
is most appropriate for an attractive test charge.

At low electron density, > r,. ~ 6—8 we find bound states for a repulsive test charge.
The binding energy of the ground state saturates at low-density at abbQ65 Ryd.

Such states might be observed in strongly correlated metals and might be relevant for
pairing (superconductivity) between equally charged carriers. For a repulsive test charge a
variational wave function with Gaussian long distance behaviour is most appropriate.

Two methods have been developed to calculate the binding energies and the wave
functions of the bound states in systems where the interaction potential in the momentum
space is known in analytical form. In general we found for the ground state and the excited
states very good agreement between the two methods. The variational approach is, from a
practical point of view, the most important method because it can be applied very easily
to more complex situations. Our result that bound states exist of a screened negative test
charge using the RPA, the HA, and two different forms for the LFCs indicates that attraction
can be expected in the three-dimensional electron gas. This prediction should be tested by
experimenters. Our theoretical considerationsfo< 5 should apply to normal metals
while r; > 5 is realized in molecular metals.
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